Partial volume effect correction in PET using regularized iterative deconvolution with variance control based on local topology.
نویسندگان
چکیده
Correcting positron emission tomography (PET) images for the partial volume effect (PVE) due to the limited resolution of PET has been a long-standing challenge. Various approaches including incorporation of the system response function in the reconstruction have been previously tested. We present a post-reconstruction PVE correction based on iterative deconvolution using a 3D maximum likelihood expectation-maximization (MLEM) algorithm. To achieve convergence we used a one step late (OSL) regularization procedure based on the assumption of local monotonic behavior of the PET signal following Alenius et al. This technique was further modified to selectively control variance depending on the local topology of the PET image. No prior 'anatomic' information is needed in this approach. An estimate of the noise properties of the image is used instead. The procedure was tested for symmetric and isotropic deconvolution functions with Gaussian shape and full width at half-maximum (FWHM) ranging from 6.31 mm to infinity. The method was applied to simulated and experimental scans of the NEMA NU 2 image quality phantom with the GE Discovery LS PET/CT scanner. The phantom contained uniform activity spheres with diameters ranging from 1 cm to 3.7 cm within uniform background. The optimal sphere activity to variance ratio was obtained when the deconvolution function was replaced by a step function few voxels wide. In this case, the deconvolution method converged in approximately 3-5 iterations for most points on both the simulated and experimental images. For the 1 cm diameter sphere, the contrast recovery improved from 12% to 36% in the simulated and from 21% to 55% in the experimental data. Recovery coefficients between 80% and 120% were obtained for all larger spheres, except for the 13 mm diameter sphere in the simulated scan (68%). No increase in variance was observed except for a few voxels neighboring strong activity gradients and inside the largest spheres. Testing the method for patient images increased the visibility of small lesions in non-uniform background and preserved the overall image quality. Regularized iterative deconvolution with variance control based on the local properties of the PET image and on estimated image noise is a promising approach for partial volume effect corrections in PET.
منابع مشابه
Deconvolution-based partial volume correction in Raclopride-PET and Monte Carlo comparison to MR-based method
In this work, we evaluated three iterative deconvolution algorithms and compared their performance to partial volume (PV) correction based on structural imaging in brain positron emission tomography (PET) using a database of Monte Carlo-simulated images. We limited our interest to quantitative radioligand PET imaging, particularly to (11)C-Raclopride and striatal imaging. The studied deconvolut...
متن کاملAn MR image-guided, voxel-based partial volume correction method for PET images.
PURPOSE Partial volume effect in positron emission tomography (PET) can cause incorrect quantification of radiopharmaceutical uptake in functional imaging. A PET partial volume correction method is presented to attenuate partial volume blurring and to yield voxel-based corrected PET images. METHODS By modeling partial volume effect as a convolution of point spread function of the PET scanner,...
متن کاملEffect of scatter coincidences, partial volume, positron range and non-colinearity on the quantification of FDOPA Patlak analysis
Introduction: The key characteristics of positron emission tomography (PET) are its quantitative capability and its sensitivity, which allow the in vivo imaging of biochemical interactions with small amounts of tracer concentrations. Therefore, accurate quantification is important. However, it can be sensitive to several physical factors. The aim of this investigation is the assessment of the e...
متن کاملPartial volume correction of brain PET studies using iterative deconvolution in combination with HYPR denoising
BACKGROUND Accurate quantification of PET studies depends on the spatial resolution of the PET data. The commonly limited PET resolution results in partial volume effects (PVE). Iterative deconvolution methods (IDM) have been proposed as a means to correct for PVE. IDM improves spatial resolution of PET studies without the need for structural information (e.g. MR scans). On the other hand, deco...
متن کاملDetermination of Fiber Direction in High Angular Resolution Diffusion Images using Spherical Harmonics Functions and Wiener Filter
Diffusion tensor imaging (DTI) MRI is a noninvasive imaging method of the cerebral tissues whose fibers directions are not evaluated correctly in the regions of the crossing fibers. For the same reason the high angular resolution diffusion images (HARDI) are used for estimation of the fiber direction in each voxel. One of the main methods to specify the direction of fibers is usage of the spher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Physics in medicine and biology
دوره 53 10 شماره
صفحات -
تاریخ انتشار 2008